Wednesday, February 8, 2023
HomeNew ZealandNuclear fusion dream a step closer to reality

Nuclear fusion dream a step closer to reality

- Advertisement -

By Esme Stallard and Rebecca Morelle

WASHINGTON, DC - DECEMBER 13: Lawrence Livermore National Laboratories Director Dr. Kim Budil speaks during a news conference with fellow administrators and scientists at the Department of Energy headquarters to announce a breakthrough in fusion research on December 13, 2022 in Washington, DC. The officials announced that experiments at the National Ignition Facility at the LLNL achieved 'ignition,' where the fusion energy generated equals the laser energy that started the reaction for the first time ever, a major advancement that may produce bountiful clean energy in the future.   Chip Somodevilla/Getty Images/AFP (Photo by CHIP SOMODEVILLA / GETTY IMAGES NORTH AMERICA / Getty Images via AFP)

Lawrence Livermore National Laboratories director Dr Kim Budil speaks during a news conference with fellow administrators and scientists at the Department of Energy headquarters.

A major breakthrough has been announced by US scientists in the race to recreate nuclear fusion.

Physicists have pursued the technology for decades as it promises a potential source of near-limitless clean energy.

On Tuesday, researchers confirmed they have overcome a major barrier – producing more energy from a fusion experiment than was put in.

But experts say there is still some way to go before fusion powers homes.

The experiment took place at the National Ignition Facility at the Lawrence Livermore National Laboratory (LLNL) in California.

LLNL director Dr Kim Budil said: “This is a historic achievement… over the past 60 years thousands of people have contributed to this endeavour and it took real vision to get us here.”

Nuclear fusion is described as the “holy grail” of energy production. It is the process that powers the Sun and other stars.

It works by taking pairs of light atoms and forcing them together – this “fusion” releases a lot of energy.

It is the opposite of nuclear fission, where heavy atoms are split apart. Fission is the technology currently used in nuclear power stations, but the process also produces a lot of waste that continues to give out radiation for a long time. It can be dangerous and must be stored safely.

Nuclear fusion produces far more energy, and only small amounts of short-lived radioactive waste. And importantly, the process produces no greenhouse gas emissions and therefore does not contribute to climate change.

But one of the challenges is that forcing and keeping the elements together in fusion requires very large amounts of temperature and pressure. Until now, no experiment has managed to produce more energy than the amount put in to make it work.

The National Ignition Facility in California is a US$3.5 billion (NZ$5.4bn) experiment. It puts a tiny amount of hydrogen into a capsule the size of a peppercorn.

Then a powerful 192-beam laser is used to heat and compress the hydrogen fuel.

The laser is so strong it can heat the capsule to 100 million degrees Celsius – hotter than the centre of the Sun, and compress it to more than 100 billion times that of Earth’s atmosphere.

Under these forces the capsule begins to implode on itself, forcing the hydrogen atoms to fuse and release energy.

On announcing the breakthrough, US National Nuclear Security Administration defence programs deputy administrator Dr Marvin Adams said the laboratory’s lasers had input 2.05 megajoules (MJ) of energy to the target, which had then produced 3.15 MJ of fusion energy output.

Fusion Energy Insights chief executive Dr Melanie Windridge told the BBC: “Fusion has been exciting scientists since they first figured out what was causing the Sun to shine. These results today really put us on the path to the commercialisation of the technology.”

Professor of plasma physics Jeremy P Chittenden, who is also co-director of the Centre for Inertial Fusion Studies at Imperial College London, called it “a true breakthrough moment”.

“It proves that the long sought-after goal, the ‘holy grail’ of fusion, can indeed be achieved,” he said.

This has been the sentiment echoed by physicists globally, who praised the work of the international science community.

University of Oxford professor of physics Gianluca Gregori said: “Today’s success rests upon the work done by many scientists in the US, UK and around the world. With ignition now achieved, not only fusion energy is unlocked, but also a door is opening to new science.”

On the question of how long before we could see fusion being used in power stations, Budil, the LLNL director, said there were still significant hurdles but that: “with concerted efforts and investment, a few decades of research on the underlying technologies could put us in a position to build a power plant”.

This is progress from when scientists used to say 50-60 years in answer to that question.

One of the main hurdles is getting cost down and scaling up the energy output.

The experiment was only able to produce enough energy to boil about 15-20 kettles and required billions of dollars of investment. And although the experiment got more energy out than the laser put in, this did not include the energy needed to make the lasers work – which was far greater that the amount of energy the hydrogen produced.


Story Credit:

- Advertisment -

Most Popular